metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hemiaquabis(2-fluorobenzoato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)lead(II) dihydrate

Su-Fang Ye and Bi-Song Zhang*

College of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China Correspondence e-mail: zbs_jy@163.com

Received 14 June 2009; accepted 13 July 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.032; wR factor = 0.078; data-to-parameter ratio = 22.0.

In the title compound, $[Pb(C_7H_4FO_2)_2(C_{12}H_8N_2)_2(H_2O)_{0.5}]$ ·-2H₂O, the Pb^{II} atom is coordinated by four N atoms from two bidentate chelating 1,10-phenanthroline (phen) ligands, four O atoms from two 2-fluorobenzoate ligands and a halfoccupied water molecule in an irregular coordination geometry. One carboxylate O atom and two F atoms are each disordered over two sites with occupancy factors of 0.558 (6) and 0.442 (6). The two crystallographically independent phen ligands are co-planar [dihedral angle 0.0 (2)°]. Centroid– centroid distances of 3.659 (7) and 3.687 (7) Å indicate $\pi-\pi$ stacking interactions between neighboring phen ligands. In the crystal, O–H···O, C–H···F and C–H···O hydrogen bonds link the complex molecules and uncoordinated water molecules into a supramolecular network.

Related literature

For other complexes with a 2(or 4)-fluorobenzoate ligand, see: Zhang *et al.* (2005). For related structures, see: Zhang (2004, 2005, 2006a,b,c).

Experimental

Crystal data

[Pb(C₇H₄FO₂)₂(C₁₂H₈N₂)₂- $\beta = 77.23 \ (3)^{\circ}$ $(H_2O)_{0.5}].2H_2O$ $\gamma = 86.20 \ (3)^{\circ}$ $M_r = 890.84$ V = 1727.0 (6) Å³ Triclinic, $P\overline{1}$ Z = 2a = 9.833 (2) Å Mo $K\alpha$ radiation b = 11.568 (2) Å $\mu = 4.95 \text{ mm}^{-1}$ T = 290 Kc = 15.766 (3) Å $\alpha = 81.11 (3)^{\circ}$ $0.34 \times 0.19 \times 0.16 \text{ mm}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.330, T_{\rm max} = 0.448$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.078$ S = 1.0210232 reflections 466 parameters R_{int} = 0.028

7916 reflections with $I > 2\sigma(I)$

28426 measured reflections 10232 independent reflections

H-atom parameters constrained $\Delta \rho_{max} = 1.33 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.77 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Pb1-O1	2.957 (8)	Pb1-N1	2.796 (3)
Pb1-O1′	2.866 (9)	Pb1-N2	2.656 (3)
Pb1-O2	2.631 (3)	Pb1-N3	2.768 (3)
Pb1-O3	2.575 (3)	Pb1-N4	2.906 (3)
Pb1-O4	2.570 (3)	Pb1 - O7W	2.965 (7)

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5W−H5WA···O2	0.85	1.98	2.796 (4)	162
$O5W - H5WB \cdots O6W$	0.85	1.97	2.757 (5)	153
$O6W - H6WA \cdots O5W^{i}$	0.85	1.98	2.809 (6)	163
$O6W - H6WB \cdots O4$	0.85	1.97	2.818 (3)	175
$O6W - H6WA \cdots O5W^{i}$	0.85	1.98	2.809 (6)	163
$O7W - H7WA \cdots O1'$	0.85	1.98	2.496 (5)	118
$O7W - H7WB \cdot \cdot \cdot O1'^{ii}$	0.85	1.99	2.565 (2)	124
C8-H8···F1 ⁱⁱⁱ	0.93	2.54	3.310 (7)	141
C30−H30···F1′ ⁱⁱ	0.93	2.50	3.032 (12)	115
C29−H29···O3 ^{iv}	0.93	2.46	3.311 (5)	153

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) -x + 1, -y + 2, -z + 1; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge financial support from the Jinhua Municipal Science and Technology (grant No. 2003-01-179). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2206).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, B.-S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 483-484.
- Zhang, B.-S. (2005). Z. Kristallogr. New Cryst. Struct. 220, 73-74.
- Zhang, B.-S. (2006a). Acta Cryst. E62, m2645-m2647.

Zhang, B.-S. (2006b). Z. Kristallogr. New Cryst. Struct. 221, 191-194.

- Zhang, B. S. (2006c). Z. Kristallogr. New Cryst. Struct. 221, 355-356. Zhang, B.-S., Zeng, X.-R., Yu, Y.-Y., Fang, X.-N. & Huang, C.-F. (2005). Z. *Kristallogr. New Cryst. Struct.* **220**, 75–76.

Acta Cryst. (2009). E65, m936-m937 [doi:10.1107/S1600536809027524]

Hemiaquabis(2-fluorobenzoato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)lead(II) dihydrate

S.-F. Ye and B.-S. Zhang

Comment

We have prepared the title complex by the hydrothermal reaction of freshly prepared PbCO₃ with 1,10-phenanthroline (phen) and 2-fluorobenzoic acid in CH₃OH/H₂O, and report here its crystal structure (Fig. 1). The title compound has a structure similar to those of complexes with halobenzoate ligands, X–C₆H₄COO⁻, where X is F, Cl, Br and I (Zhang, 2004, 2005, 2006a,b,c; Zhang *et al.*, 2005). The asymmetric unit of the title compound consists of a [Pb(C₇H₄FO₂)₂(C₁₂H₈N₂)₂(H₂O)_{0.5}] complex molecule and two uncoordinated water molecules. The Pb^{II} atom is coordinated by four N atoms from two bidentate chelating phen ligands, four O atoms from two 2-fluorobenzoate ligands and a half-occupied water molecule in an irregular coordination geometry, with Pb—N bond lengths in the range of 2.656 (3) to 2.906 (3)Å and Pb—O bond lengths in the range of 2.570 (3) to 2.965 (7)Å (Table 1). The centroid–centroid distances of 3.659 (7) and 3.687 (7) Å indicate π – π stacking interactions between the neighboring phen ligands (Fig. 2). O—H···O, C—H···F and C—H···O hydrogen bonds are also present (Table 2 and Fig. 3). A combination of the π – π stacking interactions and hydrogen bonds leads to a supramolecular network.

Experimental

 $Pb(CH_3COO)_2.3H_2O$ (0.17 g, 0.45 mmol) was dissolved in appropriate amount of water, and then 1M Na₂CO₃ solution was added. $PbCO_3$ was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared $PbCO_3$, phen (0.05 g, 0.25 mmol), 2-fluorobenzoic acid (0.04 g, 0.29 mmol), CH_3OH/H_2O (v/v = 1:2, 15 ml) were mixed and stirred for 1.5 h. Subsequently, the resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 423 K for one week. After the autoclave was cooled to room temperature, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and evaporation for 3 weeks afforded colorless transparent pillar-like single crystals. Analysis calculated for $C_{38}H_29F_2N_4O_{6.5}Pb$: C 51.19, H 3.26, N 6.28%; found: C 51.06, H 3.06, N 6.13%.

Refinement

The disordered O and F atoms on the ligands were refined isotropically. H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecules were located in a difference Fourier map and refined with restraints of O—H = 0.85 (1) Å and $U_{iso}(H) = 1.5U_{eq}(O)$. The largest peak in the final difference Fourier map is 0.24 Å from atom H35 and the deepest hole is 0.52 Å from atom F2'.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Dashed line shows the bond between Pb1 and half-occupied O7W.

tances of 3.659 (7) and 3.687 (7) Å.

Hemiaquabis(2-fluorobenzoato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)lead(II) dihydrate

Crystal data

$[Pb(C_7H_4FO_2)_2(C_{12}H_8N_2)_2(H_2O)_{0.5}]\cdot 2H_2O$	Z = 2
$M_r = 890.84$	$F_{000} = 874$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.713 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.833 (2) Å	Cell parameters from 8657 reflections
b = 11.568 (2) Å	$\theta = 2.7 - 30.5^{\circ}$
c = 15.766 (3) Å	$\mu = 4.95 \text{ mm}^{-1}$
$\alpha = 81.11 (3)^{\circ}$	T = 290 K
$\beta = 77.23 \ (3)^{\circ}$	Pillar-like, colorless
$\gamma = 86.20 \ (3)^{\circ}$	$0.34 \times 0.19 \times 0.16 \text{ mm}$
V = 1727.0 (6) Å ³	

Data collection

Bruker SMART APEX CCD diffractometer	10232 independent reflections
Radiation source: fine-focus sealed tube	7916 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 290 K	$\theta_{\text{max}} = 30.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.7^{\circ}$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 13$
$T_{\min} = 0.330, T_{\max} = 0.448$	$k = -16 \rightarrow 16$
28426 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0433P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.002$
10232 reflections	$\Delta \rho_{max} = 1.33 \text{ e} \text{ Å}^{-3}$
466 parameters	$\Delta \rho_{min} = -0.77 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Pb1	0.694779 (12)	0.832399 (10)	0.325534 (7)	0.04599 (5)	
N1	0.8374 (4)	0.7952 (3)	0.4629 (2)	0.0650 (8)	
N2	0.9505 (3)	0.9112 (3)	0.29959 (19)	0.0529 (7)	
N3	0.4998 (3)	0.7983 (3)	0.22999 (19)	0.0535 (7)	
N4	0.4509 (3)	0.6922 (3)	0.4003 (2)	0.0570 (7)	
01	0.6395 (9)	1.0811 (7)	0.3491 (5)	0.075 (2)*	0.442 (6)
01'	0.5776 (10)	1.0611 (8)	0.3514 (6)	0.112 (3)*	0.558 (6)
02	0.6834 (3)	1.0286 (2)	0.21751 (18)	0.0670 (7)	
03	0.7824 (3)	0.6229 (2)	0.30117 (19)	0.0718 (8)	
O4	0.8193 (3)	0.7548 (2)	0.18316 (16)	0.0564 (6)	
O5W	0.8186 (4)	1.0878 (3)	0.0418 (2)	0.0933 (10)	
H5WA	0.7855	1.0837	0.0967	0.140*	
H5WB	0.8144	1.0180	0.0321	0.140*	
O6W	0.8963 (4)	0.8634 (3)	0.0076 (2)	0.1016 (11)	
H6WA	0.9847	0.8631	-0.0092	0.152*	
H6WB	0.8676	0.8313	0.0603	0.152*	
O7W	0.5357 (7)	0.9161 (8)	0.4888 (6)	0.114 (3)	0.50
H7WA	0.5897	0.9728	0.4679	0.170*	0.50
H7WB	0.5360	0.8824	0.5406	0.170*	0.50
F1	0.4835 (5)	1.1309 (4)	0.1281 (3)	0.0642 (16)*	0.442 (6)
F1'	0.6161 (11)	1.3066 (9)	0.3310 (7)	0.174 (4)*	0.558 (6)
F2	0.9722 (9)	0.4352 (8)	0.2413 (6)	0.1118 (17)*	0.442 (6)
F2'	0.9188 (7)	0.4233 (6)	0.2639 (5)	0.1118 (17)*	0.558 (6)
C1	0.7849 (6)	0.7420 (4)	0.5430 (3)	0.0860 (14)	
H1	0.6973	0.7103	0.5529	0.103*	

C2	0.8501 (7)	0.7302 (5)	0.6125 (3)	0.0926 (15)	
H2	0.8076	0.6915	0.6672	0.111*	
C3	0.9756 (7)	0.7753 (4)	0.6002 (3)	0.0866 (15)	
H3	1.0213	0.7676	0.6467	0.104*	
C4	1.0395 (5)	0.8345 (4)	0.5173 (3)	0.0661 (11)	
C5	1.1716 (5)	0.8861 (4)	0.5000 (4)	0.0812 (14)	
Н5	1.2202	0.8820	0.5448	0.097*	
C6	1.2265 (4)	0.9402 (5)	0.4201 (4)	0.0812 (14)	
H6	1.3146	0.9710	0.4099	0.097*	
C7	1.1553 (4)	0.9528 (3)	0.3497 (3)	0.0618 (9)	
C8	1.2079 (4)	1.0116 (4)	0.2665 (4)	0.0762 (13)	
H8	1.2944	1.0457	0.2548	0.091*	
C9	1.1344 (5)	1.0203 (4)	0.2018 (3)	0.0723 (11)	
Н9	1.1690	1.0605	0.1461	0.087*	
C10	1.0081 (4)	0.9681 (4)	0.2211 (3)	0.0649 (10)	
H10	0.9593	0.9727	0.1764	0.078*	
C11	1.0242 (3)	0.9021 (3)	0.3638 (2)	0.0516 (8)	
C12	0.9641 (4)	0.8418 (3)	0.4497 (2)	0.0554 (8)	
C13	0.6226 (4)	1.0950 (4)	0.2690 (2)	0.0671 (10)	
C14	0.5605 (4)	1.2106 (4)	0.2336 (3)	0.0667 (10)	
C15	0.5581 (7)	1.3120 (6)	0.2687 (4)	0.1057 (18)	
H15	0.5976	1.3075	0.3176	0.127*	0.442 (6)
C16	0.5055 (10)	1.4165 (7)	0.2405 (7)	0.162 (4)	
H16	0.5106	1.4823	0.2668	0.195*	
C17	0.4438 (12)	1.4207 (9)	0.1708 (8)	0.189 (6)	
H17	0.4027	1.4909	0.1500	0.227*	
C18	0.4406 (8)	1.3262 (7)	0.1311 (5)	0.134 (3)	
H18	0.3991	1.3324	0.0830	0.161*	
C19	0.4987 (5)	1.2199 (5)	0.1615 (3)	0.0873 (15)	
H19	0.4965	1.1549	0.1337	0.105*	0.558 (6)
C21	0.5238 (5)	0.8488 (4)	0.1454 (3)	0.0667 (10)	
H21	0.6039	0.8915	0.1229	0.080*	
C22	0.4337 (5)	0.8395 (4)	0.0906 (3)	0.0769 (12)	
H22	0.4534	0.8762	0.0327	0.092*	
C23	0.3175 (5)	0.7773 (4)	0.1216 (3)	0.0787 (13)	
H23	0.2570	0.7707	0.0850	0.094*	
C24	0.2883 (4)	0.7231 (4)	0.2079 (3)	0.0644 (10)	
C25	0.1654 (5)	0.6569 (5)	0.2460 (4)	0.0849 (14)	
H25	0.1015	0.6494	0.2119	0.102*	
C26	0.1415 (4)	0.6059 (5)	0.3298 (4)	0.0864 (14)	
H26	0.0612	0.5635	0.3526	0.104*	
C27	0.2356 (4)	0.6151 (3)	0.3845 (3)	0.0640 (10)	
C28	0.2154 (5)	0.5624 (4)	0.4730 (4)	0.0818 (14)	
H28	0.1364	0.5190	0.4978	0.098*	
C29	0.3075 (5)	0.5735 (4)	0.5217 (3)	0.0794 (13)	
H29	0.2946	0.5380	0.5799	0.095*	
C30	0.4237 (4)	0.6403 (4)	0.4825 (3)	0.0700 (11)	
H30	0.4869	0.6489	0.5170	0.084*	
C31	0.3572 (3)	0.6795 (3)	0.3515 (2)	0.0508 (7)	

C32	0.3842 (3)	0.7350 (3)	0.2611 (2)	0.0519 (8)
C33	0.8114 (3)	0.6510(3)	0.2198 (2)	0.0519 (8)
C34	0.8350 (4)	0.5560 (3)	0.1620 (3)	0.0624 (9)
C35	0.7819 (6)	0.5800 (5)	0.0821 (3)	0.1034 (18)
H35	0.7385	0.6508	0.0647	0.124*
C36	0.8019 (8)	0.4873 (7)	0.0339 (5)	0.130 (2)
H36	0.7718	0.4983	-0.0188	0.156*
C37	0.8619 (9)	0.3820 (7)	0.0576 (6)	0.133 (3)
H37	0.8681	0.3236	0.0224	0.160*
C38	0.9122 (7)	0.3607 (5)	0.1308 (5)	0.114 (2)
H38	0.9570	0.2897	0.1463	0.137*
C39	0.8944 (5)	0.4497 (4)	0.1824 (3)	0.0824 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.05017 (8)	0.04824 (8)	0.04002 (7)	-0.00731 (5)	-0.01187 (5)	-0.00214 (5)
N1	0.084 (2)	0.066 (2)	0.0500 (17)	-0.0199 (17)	-0.0252 (16)	0.0001 (14)
N2	0.0529 (15)	0.0569 (17)	0.0524 (16)	-0.0064 (13)	-0.0191 (13)	-0.0061 (13)
N3	0.0539 (16)	0.0579 (17)	0.0510 (16)	-0.0040 (13)	-0.0176 (13)	-0.0055 (13)
N4	0.0508 (16)	0.0616 (19)	0.0534 (17)	-0.0048 (13)	-0.0081 (13)	0.0045 (14)
02	0.0816 (18)	0.0576 (16)	0.0581 (15)	0.0021 (13)	-0.0133 (13)	-0.0013 (12)
03	0.095 (2)	0.0565 (16)	0.0581 (16)	-0.0063 (14)	-0.0101 (14)	0.0023 (12)
O4	0.0677 (15)	0.0500 (14)	0.0494 (13)	-0.0075 (11)	-0.0086 (11)	-0.0034 (11)
O5W	0.113 (2)	0.082 (2)	0.0669 (18)	0.0181 (18)	0.0005 (17)	0.0069 (15)
O6W	0.130 (3)	0.080 (2)	0.074 (2)	0.008 (2)	0.006 (2)	0.0087 (17)
O7W	0.086 (5)	0.142 (7)	0.112 (6)	-0.007 (5)	0.002 (4)	-0.048 (5)
C1	0.117 (4)	0.078 (3)	0.065 (3)	-0.028 (3)	-0.029 (3)	0.009 (2)
C2	0.144 (5)	0.083 (3)	0.055 (2)	-0.006 (3)	-0.041 (3)	0.004 (2)
C3	0.133 (4)	0.072 (3)	0.069 (3)	0.026 (3)	-0.055 (3)	-0.019 (2)
C4	0.088 (3)	0.053 (2)	0.071 (2)	0.020 (2)	-0.042 (2)	-0.0250 (19)
C5	0.077 (3)	0.090 (3)	0.101 (4)	0.027 (2)	-0.056 (3)	-0.047 (3)
C6	0.053 (2)	0.094 (3)	0.115 (4)	0.006 (2)	-0.039 (2)	-0.045 (3)
C7	0.0517 (19)	0.062 (2)	0.080 (3)	0.0078 (16)	-0.0221 (18)	-0.028 (2)
C8	0.048 (2)	0.078 (3)	0.103 (4)	-0.0112 (19)	-0.006 (2)	-0.025 (3)
C9	0.067 (2)	0.072 (3)	0.072 (3)	-0.011 (2)	-0.004 (2)	-0.004 (2)
C10	0.060 (2)	0.076 (3)	0.057 (2)	-0.0078 (19)	-0.0125 (17)	-0.0020 (19)
C11	0.0530 (18)	0.0459 (18)	0.061 (2)	0.0070 (14)	-0.0187 (16)	-0.0182 (15)
C12	0.068 (2)	0.0455 (18)	0.061 (2)	0.0095 (16)	-0.0291 (18)	-0.0156 (15)
C13	0.081 (3)	0.074 (3)	0.0417 (18)	-0.012 (2)	-0.0091 (18)	0.0050 (17)
C14	0.067 (2)	0.060 (2)	0.061 (2)	-0.0025 (18)	0.0112 (19)	-0.0094 (18)
C15	0.114 (4)	0.096 (4)	0.101 (4)	-0.006 (3)	0.006 (3)	-0.035 (3)
C16	0.155 (8)	0.069 (4)	0.225 (11)	-0.004 (5)	0.062 (7)	-0.050 (6)
C17	0.191 (10)	0.097 (6)	0.227 (13)	0.070 (7)	0.024 (9)	0.003 (7)
C18	0.153 (6)	0.114 (5)	0.122 (5)	0.057 (5)	-0.036 (5)	0.007 (4)
C19	0.087 (3)	0.077 (3)	0.084 (3)	0.013 (2)	-0.011 (3)	0.016 (3)
C21	0.077 (3)	0.075 (3)	0.050 (2)	-0.004 (2)	-0.0205 (19)	-0.0026 (18)
C22	0.103 (3)	0.082 (3)	0.051 (2)	0.011 (3)	-0.032 (2)	-0.011 (2)

C23	0.089 (3)	0.079 (3)	0.085 (3)	0.012 (2)	-0.049 (3)	-0.027 (2)
C24	0.059 (2)	0.063 (2)	0.082 (3)	0.0078 (17)	-0.030 (2)	-0.028 (2)
C25	0.060 (2)	0.085 (3)	0.123 (4)	-0.008 (2)	-0.031 (3)	-0.035 (3)
C26	0.050 (2)	0.087 (3)	0.126 (4)	-0.015 (2)	-0.009 (3)	-0.034 (3)
C27	0.0493 (19)	0.050 (2)	0.089 (3)	-0.0029 (15)	-0.0022 (19)	-0.0144 (19)
C28	0.067 (3)	0.057 (2)	0.105 (4)	-0.012 (2)	0.015 (3)	-0.007 (2)
C29	0.076 (3)	0.068 (3)	0.076 (3)	-0.002 (2)	0.009 (2)	0.009 (2)
C30	0.067 (2)	0.072 (3)	0.062 (2)	-0.0066 (19)	-0.0073 (19)	0.010 (2)
C31	0.0435 (16)	0.0431 (17)	0.064 (2)	0.0003 (13)	-0.0067 (15)	-0.0110 (15)
C32	0.0489 (17)	0.0456 (18)	0.064 (2)	0.0034 (14)	-0.0162 (15)	-0.0137 (15)
C33	0.0482 (17)	0.053 (2)	0.054 (2)	-0.0059 (14)	-0.0079 (14)	-0.0057 (15)
C34	0.064 (2)	0.051 (2)	0.070 (2)	-0.0070 (17)	-0.0073 (19)	-0.0102 (18)
C35	0.129 (4)	0.124 (5)	0.070 (3)	-0.039 (3)	-0.012 (3)	-0.051 (3)
C36	0.157 (6)	0.130 (6)	0.129 (5)	0.008 (5)	-0.065 (5)	-0.053 (5)
C37	0.171 (7)	0.100 (5)	0.143 (7)	0.008 (5)	-0.040 (6)	-0.056 (5)
C38	0.133 (5)	0.060 (3)	0.146 (6)	0.016 (3)	-0.023 (5)	-0.025 (4)
C39	0.097 (3)	0.072 (3)	0.079 (3)	0.005 (2)	-0.023 (3)	-0.009 (2)

Geometric parameters (Å, °)

Pb1—O1	2.957 (8)	С8—Н8	0.9300
Pb1—O1'	2.866 (9)	C9—C10	1.369 (6)
Pb1—O2	2.631 (3)	С9—Н9	0.9300
Pb1—O3	2.575 (3)	C10—H10	0.9300
Pb1—O4	2.570 (3)	C11—C12	1.441 (5)
Pb1—N1	2.796 (3)	C13—C14	1.511 (6)
Pb1—N2	2.656 (3)	C14—C15	1.368 (7)
Pb1—N3	2.768 (3)	C14—C19	1.390 (7)
Pb1—N4	2.906 (3)	C15—C16	1.334 (10)
Pb1—O7W	2.965 (7)	C15—H15	0.9300
N1—C1	1.324 (5)	C16—C17	1.361 (14)
N1—C12	1.351 (5)	C16—H16	0.9300
N2—C10	1.332 (5)	C17—C18	1.346 (14)
N2—C11	1.357 (4)	C17—H17	0.9300
N3—C21	1.346 (5)	C18—C19	1.383 (7)
N3—C32	1.349 (4)	C18—H18	0.9300
N4—C30	1.319 (5)	С19—Н19	0.9300
N4—C31	1.352 (5)	C21—C22	1.386 (6)
O1—C13	1.294 (9)	C21—H21	0.9300
O1'—C13	1.285 (9)	C22—C23	1.348 (7)
O2—C13	1.234 (5)	C22—H22	0.9300
O3—C33	1.247 (4)	C23—C24	1.383 (6)
O4—C33	1.249 (4)	С23—Н23	0.9300
O5W—H5WA	0.85	C24—C32	1.419 (5)
O5W—H5WB	0.85	C24—C25	1.438 (6)
O6W—H6WA	0.85	C25—C26	1.336 (7)
O6W—H6WB	0.85	С25—Н25	0.9300
O7W—H7WA	0.85	C26—C27	1.417 (7)
O7W—H7WB	0.85	С26—Н26	0.9300

F1 C10	1 258 (7)	027 021	1 40((5)
F1	1.258 (7)	C_{2}^{-}	1.406 (5)
	1.232(11)	$C_{2}^{2} = C_{2}^{2}$	1.410(7)
$F_2 = F_2^2$	0.578 (12)	C_{28} C_{29}	1.335 (7)
F2	1.313 (10)	C28—H28	0.9300
F2-C39	1.344 (8)	$C_{29} = C_{30}$	1.393 (6)
	1.3/3 (6)	С29—Н29	0.9300
	0.9300	C30—H30	0.9300
C2—C3	1.334 (7)	C31—C32	1.445 (5)
С2—Н2	0.9300	C33—C34	1.508 (5)
C3—C4	1.411 (7)	C34—C39	1.350 (6)
С3—Н3	0.9300	C34—C35	1.450 (7)
C4—C12	1.416 (5)	C35—C36	1.387 (8)
C4—C5	1.419 (7)	С35—Н35	0.9300
C5—C6	1.331 (7)	C36—C37	1.354 (10)
С5—Н5	0.9300	С36—Н36	0.9300
C6—C7	1.422 (6)	C37—C38	1.335 (10)
С6—Н6	0.9300	С37—Н37	0.9300
С7—С8	1.385 (6)	C38—C39	1.388 (8)
C7—C11	1.410 (5)	С38—Н38	0.9300
C8—C9	1.364 (7)		
O4—Pb1—O3	50.53 (9)	N2-C10-C9	124.4 (4)
O4—Pb1—O2	82.50 (9)	N2-C10-H10	117.8
O3—Pb1—O2	132.87 (9)	С9—С10—Н10	117.8
O4—Pb1—N2	77.43 (9)	N2-C11-C7	122.0 (3)
O3—Pb1—N2	93.60 (10)	N2-C11-C12	118.7 (3)
O2—Pb1—N2	77.32 (10)	C7—C11—C12	119.3 (3)
O4—Pb1—N3	70.63 (9)	N1-C12-C4	122.4 (4)
O3—Pb1—N3	84.91 (10)	N1-C12-C11	118.8 (3)
O2—Pb1—N3	74.60 (9)	C4—C12—C11	118.8 (4)
N2—Pb1—N3	139.58 (9)	O2—C13—O1'	123.1 (5)
O4—Pb1—N1	115.89 (10)	O2—C13—O1	120.5 (5)
O3—Pb1—N1	84.61 (10)	O2—C13—C14	119.6 (3)
O2—Pb1—N1	125.93 (10)	O1'—C13—C14	115.0 (5)
N2—Pb1—N1	60.37 (9)	O1—C13—C14	117.9 (5)
N3—Pb1—N1	158.10 (10)	C15—C14—C19	114.9 (5)
O4—Pb1—O1'	129.75 (19)	C15—C14—C13	124.3 (5)
O3—Pb1—O1'	175.83 (19)	C19—C14—C13	120.8 (4)
O2—Pb1—O1'	47.27 (19)	F1'	116.7 (9)
N2—Pb1—O1'	90.5 (2)	F1'	116.0 (8)
N3—Pb1—O1'	91.4 (2)	C16—C15—C14	127.2 (8)
N1—Pb1—O1'	98.3 (2)	C16—C15—H15	116.4
O4—Pb1—N4	107.21 (9)	C14—C15—H15	116.4
O3—Pb1—N4	76.18 (10)	C15—C16—C17	115.7 (9)
O2—Pb1—N4	122.03 (9)	C15—C16—H16	122.2
N2—Pb1—N4	160.24 (9)	C17—C16—H16	122.2
N3—Pb1—N4	57.40 (9)	C18—C17—C16	122.0 (9)
N1—Pb1—N4	101.34 (10)	C18—C17—H17	119.0
O1'—Pb1—N4	100.2 (2)	C16—C17—H17	119.0
O4—Pb1—O1	126.25 (16)	C17—C18—C19	120.5 (8)
· · ·			

O3—Pb1—O1	171.29 (17)	C17—C18—H18	119.8
O2—Pb1—O1	45.79 (16)	C19—C18—H18	119.8
N2—Pb1—O1	77.69 (18)	F1—C19—C18	119.0 (6)
N3—Pb1—O1	101.79 (18)	F1—C19—C14	121.0 (4)
N1—Pb1—O1	90.83 (17)	C18—C19—C14	119.7 (6)
O1'—Pb1—O1	12.8 (2)	C18—C19—H19	120.1
N4—Pb1—O1	112.07 (18)	C14—C19—H19	120.1
O4—Pb1—O7W	176.63 (15)	N3—C21—C22	122.6 (4)
O3—Pb1—O7W	128.7 (2)	N3—C21—H21	118.7
O2—Pb1—O7W	98.0 (2)	C22—C21—H21	118.7
N2—Pb1—O7W	105.94 (17)	C23—C22—C21	119.8 (4)
N3—Pb1—O7W	106.24 (17)	С23—С22—Н22	120.1
N1—Pb1—O7W	66.54 (18)	C21—C22—H22	120.1
O1'—Pb1—O7W	50.7 (3)	C22—C23—C24	119.9 (4)
N4—Pb1—O7W	69.71 (18)	С22—С23—Н23	120.0
O1—Pb1—O7W	55.1 (2)	С24—С23—Н23	120.0
C1—N1—C12	117.0 (4)	C23—C24—C32	118.0 (4)
C1—N1—Pb1	124.3 (3)	C23—C24—C25	123.2 (4)
C12—N1—Pb1	118.5 (2)	C32—C24—C25	118.8 (4)
C10—N2—C11	117.4 (3)	C26—C25—C24	121.2 (4)
C10—N2—Pb1	119.1 (2)	С26—С25—Н25	119.4
C11—N2—Pb1	123.4 (2)	C24—C25—H25	119.4
C21—N3—C32	117.8 (3)	C25—C26—C27	121.5 (4)
C21—N3—Pb1	116.7 (3)	C25—C26—H26	119.3
C32—N3—Pb1	125.4 (2)	C27—C26—H26	119.3
C30—N4—C31	116.7 (3)	C31—C27—C28	116.2 (4)
C30—N4—Pb1	122.8 (3)	$C_{31} - C_{27} - C_{26}$	120.2(4)
C31—N4—Pb1	120.5(2)	$C_{28} = C_{27} = C_{26}$	123.2(1)
C13-O1-Pb1	84 5 (4)	$C_{29} = C_{28} = C_{27}$	123.0(1) 121.2(4)
C13-O1'-Pb1	88.6 (5)	$C_{29} = C_{28} = H_{28}$	119.4
$C_{13} = O_{2} = Ph_{1}$	1010(2)	C27_C28_H28	119.1
$C_{13} = O_2 = P_0 I_1$	920(2)	C_{28} C_{29} C_{30}	117.4
$C_{33} = 04 = Pb1$	92.0(2)	$C_{23} = C_{23} = C_{30} = H_{29}$	121.1
H5WA_O5W_H5WB	103 4	$C_{20} - C_{20} - H_{20}$	121.1
H6WA_O6W_H6WB	114.0	N4_C30_C29	121.1 125.0(4)
Db1 O7W H7WA	70.7	N4 C20 H20	123.0 (4)
Pb1 O7W U7WD	19.7	114 - 050 - 1150	117.5
	123.1	C29—C30—H30	117.3
H/WA = O/W = H/WB	117.9	N4 = C31 = C27	123.2(4)
$F_2 = F_2 = C_{39}$	30.3(13)	N4 - C31 - C32	118.0(3)
$r_2 - r_2 - c_{39}$	74.4 (14) 124.9 (5)	$C_2/-C_{31}-C_{32}$	118.8 (3)
NI = CI = C2	124.8 (5)	N3-C32-C24	121.8 (4)
NI—CI—HI	117.6	N3-C32-C31	118.6 (3)
C2—C1—H1	11/.6	$C_{24} = C_{32} = C_{31}$	119.5 (3)
C3—C2—C1	118.9 (5)	03-03-04	123.2 (3)
C3—C2—H2	120.6	03 - C33 - C34	119.0 (3)
C1—C2—H2	120.6	04—C33—C34	117.8 (3)
C2—C3—C4	120.4 (4)	C39—C34—C35	118.9 (4)
С2—С3—Н3	119.8	C39—C34—C33	124.4 (4)
С4—С3—Н3	119.8	C35—C34—C33	116.6 (4)

C3—C4—C12	116.5 (4)	C36—C35—C34	113.7 (6)
C3—C4—C5	123.4 (4)	С36—С35—Н35	123.2
C12—C4—C5	120.1 (4)	С34—С35—Н35	123.2
C6—C5—C4	120.4 (4)	C37—C36—C35	125.0 (7)
С6—С5—Н5	119.8	С37—С36—Н36	117.5
С4—С5—Н5	119.8	С35—С36—Н36	117.5
C5—C6—C7	122.5 (4)	C38—C37—C36	121.1 (6)
С5—С6—Н6	118.8	С38—С37—Н37	119.4
С7—С6—Н6	118.8	С36—С37—Н37	119.4
C8—C7—C11	117.3 (4)	C37—C38—C39	116.6 (6)
C8—C7—C6	123.8 (4)	С37—С38—Н38	121.7
C11—C7—C6	119.0 (4)	С39—С38—Н38	121.7
C9—C8—C7	120.8 (4)	F2—C39—C34	119.5 (6)
С9—С8—Н8	119.6	F2'—C39—C34	116.9 (5)
С7—С8—Н8	119.6	F2—C39—C38	113.7 (6)
C8—C9—C10	118.0 (4)	F2'—C39—C38	117.8 (6)
С8—С9—Н9	121.0	C34—C39—C38	124.6 (5)
С10—С9—Н9	121.0		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O5W—H5WA····O2	0.85	1.98	2.796 (4)	162
O5W—H5WB···O6W	0.85	1.97	2.757 (5)	153
O6W—H6WA…O5W ⁱ	0.85	1.98	2.809 (6)	163
O6W—H6WB…O4	0.85	1.97	2.818 (3)	175
O6W—H6WA…O5W ⁱ	0.85	1.98	2.809 (6)	163
O7W—H7WA…O1'	0.85	1.98	2.496 (5)	118
O7W—H7WB…O1 ^{,ii}	0.85	1.99	2.565 (2)	124
C8—H8…F1 ⁱⁱⁱ	0.93	2.54	3.310 (7)	141
C30—H30…F1 ^{'ii}	0.93	2.50	3.032 (12)	115
C29—H29····O3 ^{iv}	0.93	2.46	3.311 (5)	153

Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Fig. 1

Fig. 3

